de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Balancing Considered Harmful - Faster Photon Mapping using the Voxel Volume Heuristic

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45688

Wald,  Ingo
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44542

Günther,  Johannes
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wald, I., Günther, J., & Slusallek, P. (2004). Balancing Considered Harmful - Faster Photon Mapping using the Voxel Volume Heuristic. In The European Association for Computer Graphics 25th Annual Conference EUROGRAPHICS 2004 (pp. 595-603). Oxford, UK: Blackwell.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2A35-8
Zusammenfassung
Photon mapping is one of the most important algorithms for computing global illumination. Especially for effi- ciently producing convincing caustics, there are no real alternatives to photon mapping. On the other hand, photon mapping is also quite costly: Each radiance lookup requires to find the k nearest neighbors in a kd-tree, which can be more costly than shooting several rays. Therefore, the nearest-neighbor queries often dominate the rendering time of a photon map based renderer. In this paper, we present a method that reorganizes i.e. unbalances the kd-tree for storing the photons in a way that allows for finding the k-nearest neighbors much more efficiently, thereby accelerating the radiance estimates by a factor of 1.2 3.4. Most importantly, our method still finds exactly the same k-nearest-neighbors as the original method, without introducing any approximations or loss of accuracy. The impact of our method is demonstrated with several practical examples.