Hilfe Wegweiser Impressum Kontakt Einloggen





Cooperative facility location games


Skutella,  Martin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Goemans, M. X., & Skutella, M. (2004). Cooperative facility location games. Journal of Algorithms, 50.

The location of facilities in order to provide service for customers is a well-studied problem in the operations research literature. In the basic model, there is a predefined cost for opening a facility and also for connecting a customer to a facility, the goal being to minimize the total cost. Often, both in the case of public facilities (such as libraries, municipal swimming pools, fire stations, ...) and private facilities (such as distribution centers, switching stations, ...), we may want to find a ‘fair’ allocation of the total cost to the customers—--this is known as the cost allocation problem. A central question in cooperative game theory is whether the total cost can be allocated to the customers such that no coalition of customers has any incentive to build their own facility or to ask a competitor to service them. We establish strong connections between fair cost allocations and linear programming relaxations for several variants of the facility location problem. In particular, we show that a fair cost allocation exists if and only if there is no integrality gap for a corresponding linear programming relaxation; this was only known for the simplest unconstrained variant of the facility location problem. Moreover, we introduce a subtle variant of randomized rounding and derive new proofs for the existence of fair cost allocations for several classes of instances. We also show that it is in general NP-complete to decide whether a fair cost allocation exists and whether a given allocation is fair.