English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Scalable Multimedia Disk Scheduling

MPS-Authors
/persons/resource/persons44374

Elbassioni,  Khaled
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Elbassioni, K. (2004). Scalable Multimedia Disk Scheduling. In 20th International Conference on Data Engineering, ICDE 2004 (pp. 498-509). Los Alamitos, USA: IEEE.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-292F-B
Abstract
A new multimedia disk scheduling algorithm, termed Cascaded-SFC, is presented. The Cascaded-SFC multimedia disk scheduler is applicable in environments where multimedia data requests arrive with different quality of service (QoS) requirements such as real-time deadline and user priority. Previous work on disk scheduling has focused on optimizing the seek times and/or meeting the real-time deadlines. The Cascaded-SFC disk scheduler provides a unified framework for multimedia disk scheduling that scales with the number of scheduling parameters. The general idea is based on modeling the multimedia disk requests as points in multiple multi-dimensional sub-spaces, where each of the dimensions represents one of the parameters (e.g., one dimension represents the request deadline, another represents the disk cylinder number, and a third dimension represents the priority of the request, etc.). Each multi-dimensional sub-space represents a subset of the QoS parameters that share some common scheduling characteristics. Then the multimedia disk scheduling problem reduces to the problem of finding a linear order to traverse the multi-dimensional points in each sub-space. Multiple space-filling curves are selected to fit the scheduling needs of the QoS parameters in each sub-space. The orders in each sub-space are integrated in a cascaded way to provide a total order for the whole space. Comprehensive experiments demonstrate the efficiency and scalability of the Cascaded-SFC disk scheduling algorithm over other disk schedulers.