de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Textures Revisited

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45769

Yamauchi,  Hitoshi
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44911

Lensch,  Hendrik P. A.
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44557

Haber,  Jörg
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Yamauchi, H., Lensch, H. P. A., Haber, J., & Seidel, H.-P. (2005). Textures Revisited. The Visual Computer, 21, 217-241.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-27DF-2
Zusammenfassung
We describe texture generation methods for complex objects. Recent 3D scanning devices and high-resolution cameras can capture complex geometry of an object and provide high-resolution images. However, generating a textured model from this input data is still a difficult problem. This task is divided into three sub-problems: parameterization, texture combination, and texture restoration. A low distortion parameterization method is presented, which minimizes geometry stretch energy. Photographs of the object taken from multiple viewpoints under modestly uncontrolled illumination conditions are merged into a seamless texture by our new texture combination method. We also demonstrate a texture restoration method which can fill in missing pixel information when the input photographs do not provide sufficient information to cover the entire surface due to self-occlusion or registration errors. Our methods are fully automatic except the registration between a 3D model with input photographs. We demonstrate the application of our method to human face models for evaluation. The techniques presented in this paper make a consistent and complete pipeline to generate a texture of a complex object.