de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Robust Filtering of Noisy Scattered Point Data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45372

Schall,  Oliver
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44112

Belyaev,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schall, O., Belyaev, A., & Seidel, H.-P. (2005). Robust Filtering of Noisy Scattered Point Data. In IEEE/Eurographics Symposium on Point-Based Graphics (pp. 71-77). Aire-la-Ville, Switzerland: Eurographics Association.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2797-F
Zusammenfassung
In this paper, we develop a method for robust filtering of a noisy set of points sampled from a smooth surface. The main idea of the method consists of using a kernel density estimation technique for point clustering. Specifically, we use a mean-shift based clustering procedure. With every point of the input data we associate a local likelihood measure capturing the probability that a 3D point is located on the sampled surface. The likelihood measure takes into account the normal directions estimated at the scattered points. Our filtering procedure suppresses noise of different amplitudes and allows for an easy detection of outliers which are then automatically removed by simple thresholding. The remaining set of maximum likelihood points delivers an accurate point-based approximation of the surface. We also show that while some established meshing techniques often fail to reconstruct the surface from original noisy point scattered data, they work well in conjunction with our filtering method.