de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Ray Maps for Global Illumination

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44596

Havran,  Vlastimil
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44618

Herzog,  Robert
Computer Graphics, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44753

Keller,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Havran, V., Bittner, J., Herzog, R., & Seidel, H.-P. (2005). Ray Maps for Global Illumination. In Rendering Techniques 2005: Eurographics Symposium on Rendering (pp. 43-54,311). Aire-la-Ville, Switzerland: Eurographics Association.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-277D-B
Abstract
We describe a novel data structure for representing light transport called ray map. The ray map extends the concept of photon maps: it stores not only photon impacts but the whole photon paths. We demonstrate the utility of ray maps for global illumination by eliminating boundary bias and reducing topological bias of density estimation in global illumination. Thanks to the elimination of boundary bias we could use ray maps for fast direct visualization with the image quality being close to that obtained by the expensive final gathering step. We describe in detail our implementation of the ray map using a lazily constructed kD-tree. We also present several optimizations bringing the ray map query performance close to the performance of the photon map.