de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pose Estimation in Conformal Geometric Algebra : Part II, Real-time Pose Estimation Using Extended Feature Concepts

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rosenhahn, B., & Sommer, G. (2005). Pose Estimation in Conformal Geometric Algebra: Part II, Real-time Pose Estimation Using Extended Feature Concepts. Journal of Mathematical Imaging and Vision, 0924-990722, 49-70. doi:10.1007/s10851-005-4782-9.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2767-C
Zusammenfassung
Part II uses the foundations of Part I [35] to define constraint equations for 2D-3D pose estimation of different corresponding entities. Most articles on pose estimation concentrate on specific types of correspondences, mostly between points, and only rarely use line correspondences. The first aim of this part is to extend pose estimation scenarios to correspondences of an extended set of geometric entities. In this context we are interested to relate the following (2D) image and (3D) model types: 2D point/3D point, 2D line/3D point, 2D line/3D line, 2D conic/3D circle, 2D conic/3D sphere. Furthermore, to handle articulated objects, we describe kinematic chains in this context in a similar manner. We ensure that all constraint equations end up in a distance measure in the Euclidean space, which is well posed in the context of noisy data. We also discuss the numerical estimation of the pose. We propose to use linearized twist transformations which result in well conditioned and fast solvable systems of equations. The key idea is not to search for the representation of the Lie group, describing the rigid body motion, but for the representation of their generating Lie algebra. This leads to real-time capable algorithms.