Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt





Implementing Minimum Cycle Basis Algorithms


Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Michail,  Dimitrios
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Mehlhorn, K., & Michail, D. (2005). Implementing Minimum Cycle Basis Algorithms. In Experimental and Efficient Algorithms, 4th InternationalWorkshop, WEA 2005 (pp. 32-43). Berlin, Germany: Springer.

In this paper we consider the problem of computing a minimum cycle basis of an undirected graph $G = (V,E)$ with $n$ vertices and $m$ edges. We describe an efficient implementation of an $O(m^3 + mn^2\log n)$ algorithm presented in~\cite{PINA95}. For sparse graphs this is the currently best known algorithm. This algorithm's running time can be partitioned into two parts with time $O(m^3)$ and $O( m^2n + mn^2 \log n)$ respectively. Our experimental findings imply that the true bottleneck of a sophisticated implementation is the $O( m^2 n + mn^2 \log n)$ part. A straightforward implementation would require $\Omega(nm)$ shortest path computations, thus we develop several heuristics in order to get a practical algorithm. Our experiments show that in random graphs our techniques result in a significant speedup. Based on our experimental observations, we combine the two fundamentally different approaches to compute a minimum cycle basis used in~\cite{PINA95,KMMP04} and~\cite{HOR87,MATR02}, to obtain a new hybrid algorithm with running time $O( m^2 n^2 )$. The hybrid algorithm is very efficient in practice for random dense unweighted graphs. Finally, we compare these two algorithms with a number of previous implementations for finding a minimum cycle basis in an undirected graph.