Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Harmonic Guidance for Surface Deformation

MPG-Autoren
/persons/resource/persons45789

Zayer,  Rhaleb
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45303

Rössl,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons44736

Karni,  Zachi
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zayer, R., Rössl, C., Karni, Z., & Seidel, H.-P. (2005). Harmonic Guidance for Surface Deformation. In The European Association for Computer Graphics 26th Annual Conference: EUROGRAPHICS 2005 (pp. 601-609). Oxford, UK: Blackwell.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-26B4-6
Zusammenfassung
We present an interactive method for applying deformations to a surface mesh while preserving its global shape and local properties. Two surface editing scenarios are discussed, which conceptually differ in the specification of deformations: Either interpolation constraints are imposed explicitly, e.g., by dragging a subset of vertices, or, deformation of a reference surface is mimicked. The contribution of this paper is a novel approach for interpolation of local deformations over the manifold and for efficiently establishing correspondence to a reference surface from only few pairs of markers. As a general tool for both scenarios, a harmonic field is constructed to guide the interpolation of constraints and to find correspondence required for deformation transfer. We show that our approach fits nicely in a unified mathematical framework, where the same type of linear operator is applied in all phases, and how this approach can be used to create an intuitive and interactive editing tool.