Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Discrepancy of Products of Hypergraphs

MPG-Autoren
/persons/resource/persons44338

Doerr,  Benjamin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

/persons/resource/persons44598

Hebbinghaus,  Nils
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Doerr, B., & Hebbinghaus, N. (2005). Discrepancy of Products of Hypergraphs. In 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05) (pp. 323-328). Nancy, France: DMTCS.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-2640-C
Zusammenfassung
For a hypergraph {${\mathcal{H} = (V,\mathcal{E})}$}, its {${d}$}--fold symmetric product is {${ \Delta ^{d} \mathcal{H} = (V^{d},\{ E^{d} | E {\in}\mathcal{E} \}) }$}. We give several upper and lower bounds for the {${c}$}-color discrepancy of such products. In particular, we show that the bound {${ \textrm{disc}(\Delta ^{d} \mathcal{H},2) {\leq}\textrm{disc}(\mathcal{H},2) }$} proven for all {${d}$} in [B.\ Doerr, A.\ Srivastav, and P.\ Wehr, Discrepancy of {C}artesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than {${c = 2}$} colors. In fact, for any {${c}$} and {${d}$} such that {${c}$} does not divide {${d!}$}, there are hypergraphs having arbitrary large discrepancy and {${ \textrm{disc}(\Delta ^{d} \mathcal{H},c) = \Omega_{d}(\textrm{disc}(\mathcal{H},c)^{d}) }$}. Apart from constant factors (depending on {${c}$} and {${d}$}), in these cases the symmetric product behaves no better than the general direct product {${\mathcal{H}^{d}}$}, which satisfies {${ \textrm{disc}(\mathcal{H}^{d},c) = O_{c,d}(\textrm{disc}(\mathcal{H},c)^{d}) }$}.