de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Bayesian Relighting

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44457

Fuchs,  Martin
Computer Graphics, MPI for Informatics, Max Planck Society;
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44144

Blanz,  Volker
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44753

Keller,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fuchs, M., Blanz, V., & Seidel, H.-P. (2005). Bayesian Relighting. In Rendering Techniques 2005: Eurographics Symposium on Rendering (pp. 157-164). Aire-la-Ville, Switzerland: Eurographics Association.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-25ED-0
Zusammenfassung
We present a simple method for relighting real objects viewed from a fixed camera position. Instead of setting up a calibrated measurement device, such as a light stage, we manually sweep a spotlight over the walls of a white room, illuminating the object indirectly. In contrast to previous methods, we use arbitrary and unknown angular distributions of incoming light. Neither the incident light nor the reflectance function need to be represented explicitly in our approach.\\ % The new method relies on images of a probe object, for instance a black snooker ball, placed near the target object. Pictures of the probe in a novel illumination are decomposed into a linear combination of measured images of the probe. Then, a linear combination of images of the target object with the same coefficients produces a synthetic image with the new illumination. We use a simple Bayesian approach to find the most plausible output image, given the picture of the probe and the statistics observed in the dataset of samples.\\ % Our results for a variety of novel illuminations, including synthetic lighting by relatively narrow light sources as well as natural illuminations, demonstrate that the new technique is a useful, low cost alternative to existing techniques for a broad range of objects and materials.