de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44118

Berberich,  Eric
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44609

Hemmer,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44766

Kettner,  Lutz
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45414

Schömer,  Elmar
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45758

Wolpert,  Nicola
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44766

Kettner,  Lutz
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Berberich, E., Hemmer, M., Kettner, L., Schömer, E., & Wolpert, N. (2005). An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves. In 21st Annual Symposium on Computational Geometry (SCG'05) (pp. 99-106). New York, USA: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-25AE-D
Zusammenfassung
We present the first exact, complete and efficient implementation that computes for a given set $P=\{p_1,\dots,p_n\}$ of quadric surfaces the planar map induced by all intersection curves $p_1\cap p_i$, $2\leq i\leq n$, running on the surface of $p_1$. The vertices in this graph are the singular and $x$-extreme points of the curves as well as all intersection points of pairs of curves. Two vertices are connected by an edge if the underlying points are connected by a branch of one of the curves. Our work is based on and extends ideas developed in~[20] and~[9]. Our implementation is {\em complete} in the sense that it can handle all kind of inputs including all degenerate ones where intersection curves have singularities or pairs of curves intersect with high multiplicity. It is {\em exact} in that it always computes the mathematical correct result. It is {\em efficient} measured in running times.