de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

An Asymptotic Approximation Scheme for Multigraph Edge Coloring

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45344

Sanders,  Peter
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45554

Steurer,  David
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sanders, P., & Steurer, D. (2005). An Asymptotic Approximation Scheme for Multigraph Edge Coloring. In 16th ACM-SIAM Symposium on Discrete Algorithms (pp. 897-906). New York/Philadephia: ACM/SIAM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-25A0-9
Zusammenfassung
The edge coloring problem asks for assigning colors from a minimum number of colors to edges of a graph such that no two edges with the same color are incident to the same node. We give polynomial time algorithms for approximate edge coloring of multigraphs, i.e., parallel edges are allowed. The best previous algorithms achieve a fixed constant approximation factor plus a small additive offset. Our algorithms achieve arbitrarily good approximation factors at the cost of slightly larger additive term. In particular, for any $\epsilon>0$ we achieve a solution quality of $(1+\epsilon)\opt+\Oh{1/\epsilon}$. The execution times of one algorithm are independent of $\epsilon$ and polynomial in the number of nodes and the \emph{logarithm} of the maximum edge multiplicity.