de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A moving mesh approach to stretch-minimizing mesh parameterization

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45777

Yoshizawa,  Shin
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44112

Belyaev,  Alexander
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Yoshizawa, S., Belyaev, A., & Seidel, H.-P. (2005). A moving mesh approach to stretch-minimizing mesh parameterization. International Journal of Shape Modeling, 11, 25-42.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-2597-0
Abstract
We propose to use a moving mesh approach, a popular grid adaption technique in computational mechanics, for fast generating low-stretch mesh parameterizations. Given a triangle mesh approximating a surface, we construct an initial parameterization of the mesh and then improve the parameterization gradually. At each improvement step, we optimize the parameterization generated at the previous step by minimizing a weighted quadratic energy where the weights are chosen in order to minimize the parameterization stretch. This optimization procedure does not generate triangle flips if the boundary of the parameter domain is a convex polygon. Moreover already the first optimization step produces a high-quality mesh parameterization. We compare our parameterization procedure with several state-of-art mesh parameterization methods and demonstrate its speed and high efficiency in parameterizing large and geometrically complex models.