English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

''To Infinity and Beyond'': P2P Web Search with Minerva and Minerva∞

MPS-Authors
/persons/resource/persons44113

Bender,  Matthias
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45041

Michel,  Sebastian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45636

Triantafillou,  Peter
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45808

Zimmer,  Christian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bender, M., Michel, S., Triantafillou, P., Weikum, G., & Zimmer, C. (2006). ''To Infinity and Beyond'': P2P Web Search with Minerva and Minerva∞. In R. Baldoni, G. Cortese, F. Davide, & A. Melpignano (Eds.), Global Data Management (pp. 301-323). Amsterdam, The Netherlands: IOSPress.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-243C-8
Abstract
Peer-to-peer (P2P) computing is an intriguing paradigm for Web search for several reasons: 1) the computational resources of a huge computer network can facilitate richer mathematical and linguistic models for ranked retrieval, 2) the network provides a collaborative infrastructure where recommendations of many users and the community behavior can be leveraged for better search result quality, and 3) the decentralized architecture of a P2P search engine is a great alternative to the de-facto monopoly of the few large-scale commercial search services with the potential risk of information bias or even censorship. The challenges of implementing this visionary approach lie in coping with the huge scale and high dynamics of P2P networks. This paper discusses the architectural design space for a scalable P2P Web search engine and presents two specific architectures in more detail. The paper's focus is on query routing and query execution and their performance as the network grows to larger scales.