de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Shape Matching Based on Fully Automatic Face Detection on Triangular Meshes

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44463

von Funck,  Wolfram
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45606

Theisel,  Holger
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

von Funck, W., Theisel, H., & Seidel, H.-P. (2006). Shape Matching Based on Fully Automatic Face Detection on Triangular Meshes. In Advances in Computer Graphics : 24th Computer Graphics International Conference, CGI 2006 (pp. 242-253). Berlin, Germany: Springer.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-23EE-D
Abstract
This paper tackles a particular shape matching problem: given a data base of shapes (described as triangular meshes), we search for all shapes which describe a human. We do so by applying a 3D face detection approach on the mesh which consists of three steps: first, a local symmetry value is computed for each vertex. Then, the symmetry values in a certain neighborhood of each vertex are analyzed for building sharp symmetry lines. Finally, the geometry around each vertex is analyzed to get further facial features like nose and forehead. We tested our approach with several shape data bases (e.g. the Princeton Shape Benchmark) and achieved high rates of correct face detection.