Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Resistance proteins: molecular switches of plant defence


Albrecht,  Mario
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Takken, F. L., Albrecht, M., & Tameling, W. I. (2006). Resistance proteins: molecular switches of plant defence. Current Opinion in Plant Biology, 9, 383-390.

Cite as:
Specificity of the plant innate immune system is often conferred by resistance (R) proteins. Most R proteins contain leucine-rich repeats (LRRs), a central nucleotide-binding site (NBS) and a variable amino-terminal domain. The LRRs are mainly involved in recognition, whereas the amino-terminal domain determines signalling specificity. The NBS forms part of a nucleotide binding (NB)-ARC domain that presumably functions as a molecular switch. The conserved nature of NB-ARC proteins makes it possible to map mutations of R protein residues onto the crystal structures of related NB-ARC proteins, providing hypotheses for the functional roles of these residues. A functional model emerges in which the LRRs control the molecular state of the NB-ARC domain. Pathogen recognition triggers nucleotide-dependent conformational changes that might induce oligomerisation, thereby providing a scaffold for activation of downstream signalling components.