de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

On-the-fly Point Clouds through Histogram Pyramids

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45805

Ziegler,  Gernot
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ziegler, G., Theobalt, C., & Seidel, H.-P. (2006). On-the-fly Point Clouds through Histogram Pyramids. In 11th International Fall Workshop on Vision, Modeling and Visualization 2006 (VMV2006) (pp. 137-144). Berlin, Germany: Aka.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2399-D
Zusammenfassung
Image Pyramids, as created during a reduction process of 2D image maps, are frequently used in porting non-local algorithms to graphics hardware. A Histogram pyramid (short: HistoPyramid), a special version of image pyramid, collects the number of active entries in a 2D image. We show how a HistoPyramid can be utilized as an implicit indexing data structure, allowing us to convert a sparse 3D volume into a point cloud entirely on the graphics hardware. In the generalized form, the algorithm reduces a highly sparse matrix with N elements to a list of its M active entries in O(N) + M (log N) steps, despite the restricted graphics hardware architecture. Our method can be used to deliver new and unusual visual effects, such as particle explosions of arbitrary geometry models. Beyond this, the algorithm is able to accelerate feature detection, pixel classification and binning, and enable high-speed sparse matrix compression.