de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

On the Fast Construction of Spatial Hierarchies for Ray Tracing

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44596

Havran,  Vlastimil
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44618

Herzog,  Robert
Computer Graphics, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45688

Wald,  Ingo
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Havran, V., Herzog, R., & Seidel, H.-P. (2006). On the Fast Construction of Spatial Hierarchies for Ray Tracing. In Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing (pp. 71-80). Piscataway, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2397-2
Zusammenfassung
In this paper we address the problem of fast construction of spatial hierarchies for ray tracing with applications in animated environments including non-rigid animations. We discuss properties of currently used techniques with $O(N \log N)$ construction time for kd-trees and bounding volume hierarchies. Further, we will propose a hybrid data structure blending a spatial kd-tree with bounding volume primitives. We will keep our novel hierarchical data structures algorithmically efficient and comparable with kd-trees by using a cost model based on surface area heuristics. Although the time complexity $O(N \log N)$ is a lower bound required for construction of any spatial hierarchy, which corresponds to sorting based on comparisons, using an approximate method based on space discretization, we propose a new hierarchical data structures with expected $O(N \log\log N)$ time complexity. We also discuss the constants behind the construction algorithms of spatial hierarchies that are important in practice. We document the performance of our algorithms by results obtained from nine different scenes.