de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Nonparametric Density Estimation for Human Pose Tracking

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45312

Rosenhahn,  Bodo
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Brox, T., Rosenhahn, B., Kersting, U., & Cremers, D. (2006). Nonparametric Density Estimation for Human Pose Tracking. In Pattern Recognition : 28th DAGM Symposium (pp. 546-555). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-238C-B
Zusammenfassung
The present paper considers the supplement of prior knowledge about joint angle configurations in the scope of 3-D human pose tracking. Training samples obtained from an industrial marker based tracking system are used for a nonparametric Parzen density estimation in the 12-dimensional joint configuration space. These learned probability densities constrain the image-driven joint angle estimates by drawing solutions towards familiar configurations. This prevents the method from producing unrealistic pose estimates due to unreliable image cues. Experiments on sequences with a human leg model reveal a considerably increased robustness, particularly in the presence of disturbed images and occlusions. We gratefully acknowledge funding by the DFG project CR250/1 and the Max-Planck Center for visual computing and communication.