de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Matching Algorithms are Fast in Sparse Random Graphs

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44076

Bast,  Holger
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45363

Schäfer,  Guido
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45588

Tamaki,  Hisao
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Bast, H., Mehlhorn, K., Schäfer, G., & Tamaki, H. (2006). Matching Algorithms are Fast in Sparse Random Graphs. Theory of Computing Systems, 39, 3-14.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-2361-9
Abstract
We present an improved average case analysis of the maximum cardinality matching problem. We show that in a bipartite or general random graph on $n$ vertices, with high probability every non-maximum matching has an augmenting path of length $O(\log n)$. This implies that augmenting path algorithms like the Hopcroft--Karp algorithm for bipartite graphs and the Micali--Vazirani algorithm for general graphs, which have a worst case running time of $O(m\sqrt{n})$, run in time $O(m \log n)$ with high probability, where $m$ is the number of edges in the graph. Motwani proved these results for random graphs when the average degree is at least $\ln (n)$ [\emph{Average Case Analysis of Algorithms for Matchings and Related Problems}, Journal of the ACM, \textbf{41}(6), 1994]. Our results hold, if only the average degree is a large enough constant. At the same time we simplify the analysis of Motwani.