de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Improved Scoring of Functional Groups from Gene Expression Data by Decorrelating GO Graph Structure

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons43995

Alexa,  Adrian
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45241

Rahnenführer,  Jörg
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44907

Lengauer,  Thomas
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alexa, A., Rahnenführer, J., & Lengauer, T. (2006). Improved Scoring of Functional Groups from Gene Expression Data by Decorrelating GO Graph Structure. Bioinformatics, 22, 1600-1607.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-232C-1
Zusammenfassung
\begin{abstract} \section{Motivation:} The result of a typical microarray experiment is a long list of genes with corresponding expression measurements. This list is only the starting point for a meaningful biological interpretation. Modern methods identify relevant biological processes or functions from gene expression data by scoring the statistical significance of predefined functional gene groups, for example based on \emph{Gene Ontology} (GO). We develop methods that increase the explanatory power of this approach by integrating knowledge about relationships between the GO terms into the calculation of the statistical significance. \section{Results:} We present two novel algorithms that improve GO group scoring using the underlying GO graph topology. The algorithms are evaluated on real and on simulated gene expression data. We show that both methods eliminate local dependencies between GO terms and point to relevant areas in the GO graph that remain undetected with state-of-the-art algorithms for scoring functional terms. A simulation study demonstrates that the new methods exhibit a higher level of detecting relevant biological terms than competing methods. \section{Availability:} \href{http://topgo.bioinf.mpi-inf.mpg.de}{topgo.bioinf.mpi-inf.mpg.de} \section{Contact:} \href{alexa@mpi-sb.mpg.de}{alexa@mpi-sb.mpg.de} \end{abstract}