de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Generating All Vertices of a Polyhedron is Hard

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44374

Elbassioni,  Khaled
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., & Gurvich, V. (2006). Generating All Vertices of a Polyhedron is Hard. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'06 (pp. 758-765). New York, USA: ACM / SIAM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-22F4-5
Zusammenfassung
We show that generating all negative cycles of a weighted graph is a hard enumeration problem, in both the directed and undirected cases. More precisely, given a family of negative (directed) cycles, it is an NP-complete problem to decide whether this family can be extended or there are no other negative (directed) cycles in the graph, implying that (directed) negative cycles cannot be generated in polynomial output time, unless P=NP. As a corollary, we solve in the negative two well-known generating problems from linear programming: (i) Given an infeasible system of linear inequalities, generating all minimal infeasible subsystems is hard. Yet, for generating maximal feasible subsystems the complexity remains open. (ii) Given a feasible system of linear inequalities, generating all vertices of the corresponding polyhedron is hard. Yet, in the case of bounded polyhedra the complexity remains open