de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Fast Probabilistic Planning Through Weighted Model Counting

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44632

Hoffmann,  Jörg
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Domshlak, C., & Hoffmann, J. (2006). Fast Probabilistic Planning Through Weighted Model Counting. In Proceedings of the Sixteenth International Conference on Automated Planning and Scheduling (ICAPS 2006) (pp. 243-252). Menlo Park, USA: AAAI.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-22CE-0
Zusammenfassung
We present a new algorithm for probabilistic planning with no observability. Our algorithm, called Probabilistic-FF, extends the heuristic forward-search machinery of Conformant-FF to problems with probabilistic uncertainty about both the initial state and action effects. Specifically, Probabilistic-FF combines Conformant-FF's techniques with a powerful machinery for weighted model counting in (weighted) CNFs, serving to elegantly define both the search space and the heuristic function. Our evaluation of Probabilistic-FF on several probabilistic domains shows an unprecedented, several orders of magnitude improvement over previous results in this area.