de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient Solving of Quantified Inequality Constraints over the Real Numbers

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45262

Ratschan,  Stefan
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ratschan, S. (2006). Efficient Solving of Quantified Inequality Constraints over the Real Numbers. ACM Transactions on Computational Logic, 7, 723-748.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-22AC-B
Zusammenfassung
Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are $\leq$ and $<$. Solving such constraints is an undecidable problem when allowing function symbols such $\sin$ or $\cos$. In the paper we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques.