de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

DynaPred: A structure and sequence based method for the prediction of MHC class I binding peptide sequence and conformations

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44023

Antes,  Iris
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45497

Siu,  Weng-In
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44907

Lengauer,  Thomas
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Antes, I., Siu, W.-I., & Lengauer, T. (2006). DynaPred: A structure and sequence based method for the prediction of MHC class I binding peptide sequence and conformations. Bioinformatics, 22, 16-24.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-22A4-C
Abstract
Motivation: The binding of endogenous antigenic peptides to MHC class I molecules is an important step during the immunologic response of a host against a pathogen. Thus, various sequence- and structure-based prediction methods have been proposed for this purpose. The sequence-based methods are computationally efficient, but are hampered by the need of sufficient experimental data and do not provide a structural interpretation of their results. The structural methods are data-independent, but are quite time-consuming and thus not suited for screening of whole genomes. Here, we present a new method, which performs sequence-based prediction by incorporating information obtained from molecular modeling. This allows us to perform large databases screening and to provide structural information of the results. Results: We developed a SVM-trained, quantitative matrix-based method for the prediction of MHC class I binding peptides, in which the features of the scoring matrix are energy terms retrieved from molecular dynamics simulations. At the same time we used the equilibrated structures obtained from the same simulations in a simple and efficient docking procedure. Our method consists of two steps: First, we predict potential binders from sequence data alone and second, we construct protein-peptide complexes for the predicted binders. So far, we tested our approach on the HLA-A0201 allele. We constructed two prediction models, using local, position-dependent (DynaPredPOS) and global, position-independent (DynaPred) features. The former model outperformed the two sequence-based methods used in our evaluation; the latter shows a much higher generalizability towards other alleles than the position-dependent models. The constructed peptide structures can be refined within seconds to structures with an average backbone RMSD of 1.53 Å from the corresponding experimental structures.