de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Discrepancy of Symmetric Products of Hypergraphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44338

Doerr,  Benjamin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44598

Hebbinghaus,  Nils
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Doerr, B., Gnewuch, M., & Hebbinghaus, N. (2006). Discrepancy of Symmetric Products of Hypergraphs. The Electronic Journal of Combinatorics, 13, 1-12.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2299-6
Zusammenfassung
For a hypergraph ${\mathcal H} = (V,{\mathcal E})$, its $d$--fold symmetric product is $\Delta^d {\mathcal H} = (V^d,\{E^d |E \in {\mathcal E}\})$. We give several upper and lower bounds for the $c$-color discrepancy of such products. In particular, we show that the bound ${disc}(\Delta^d {\mathcal H},2) \le {disc}({\mathcal H},2)$ proven for all $d$ in [B. Doerr, A. Srivastav, and P. Wehr, Discrepancy of {C}artesian products of arithmetic progressions, Electron. J. Combin. 11(2004), Research Paper 5, 16 pp.] cannot be extended to more than $c = 2$ colors. In fact, for any $c$ and $d$ such that $c$ does not divide $d!$, there are hypergraphs having arbitrary large discrepancy and ${disc}(\Delta^d {\mathcal H},c) = \Omega_d({disc}({\mathcal H},c)^d)$. Apart from constant factors (depending on $c$ and $d$), in these cases the symmetric product behaves no better than the general direct product ${\mathcal H}^d$, which satisfies ${disc}({\mathcal H}^d,c) = O_{c,d}({disc}({\mathcal H},c)^d)$.