Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt





Deterministic Random Walks


Doerr,  Benjamin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Raman,  Rajeev
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Cooper, J., Doerr, B., Spencer, J., & Tardos, G. (2006). Deterministic Random Walks. In Proceedings of the Eighth Workshop on Algorithm Engineering and Experiments and the Third Workshop on Analytic Algorithmics and Combinatorics (ALENEX'06 / ANALCO'06) (pp. 185-197). Philadelphia, PA, USA: SIAM.

Jim Propp’s P-machine, also known as ‘rotor router model’ is a simple deterministic process that simulates random walk on a graph. Instead of distributing chips to randomly chosen neighbors, it serves the neighbors in a fixed order. We investigate how well this process simulates a random walk. For the graph being the infinite path, we show that, independent of the starting configuration, at each time and on each vertex, the number of chips on this vertex deviates from the expected number of chips in the random walk model by at most a constant c1, which is approximately 2.29. For intervals of length L, this improves to a difference of O(log L) (instead of 2.29L), for the L2 average of a contiguous set of intervals even to O(√log L). It seems plausible that similar results hold for higher-dimensional grids Zd instead of the path Z.