de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Counting at Large: Efficient Cardinality Estimation in Internet-Scale Data Networks

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45636

Triantafillou,  Peter
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ntarmos, N., Triantafillou, P., & Weikum, G. (2006). Counting at Large: Efficient Cardinality Estimation in Internet-Scale Data Networks. In Proceedings of the 22nd International Conference on Data Engineering (ICDE 2006) (pp. 1-10). Los Alamitos, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-2274-7
Abstract
Counting in general, and estimating the cardinality of (multi-) sets in particular, is highly desirable for a large variety of applications, representing a foundational block for the efficient deployment and access of emerging internetscale information systems. Examples of such applications range from optimizing query access plans in internet-scale databases, to evaluating the significance (rank/score) of various data items in information retrieval applications. The key constraints that any acceptable solution must satisfy are: (i) efficiency: the number of nodes that need be contacted for counting purposes must be small in order to enjoy small latency and bandwidth requirements; (ii) scalability, seemingly contradicting the efficiency goal: arbitrarily large numbers of nodes nay need to add elements to a (multi-) set, which dictates the need for a highly distributed solution, avoiding server-based scalability, bottleneck, and availability problems; (iii) access and storage load balancing: counting and related overhead chores should be distributed fairly to the nodes of the network; (iv) accuracy: tunable, robust (in the presence of dynamics and failures) and highly accurate cardinality estimation; (v) simplicity and ease of integration: special, solution-specific indexing structures should be avoided. In this paper, first we contribute a highly-distributed, scalable, efficient, and accurate (multi-) set cardinality estimator. Subsequently, we show how to use our solution to build and maintain histograms, which have been a basic building block for query optimization for centralized databases, facilitating their porting into the realm of internet-scale data networks.