English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Conformant planning via heuristic forward search: A new approach

MPS-Authors
/persons/resource/persons44632

Hoffmann,  Jörg
Programming Logics, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hoffmann, J., & Brafman, R. I. (2006). Conformant planning via heuristic forward search: A new approach. Artificial Intelligence, 170, 507-541.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-2269-0
Abstract
Conformant planning is the task of generating plans given uncertainty about the initial state and action effects, and without any sensing capabilities during plan execution. The plan should be successful regardless of which particular initial world we start from. It is well known that conformant planning can be transformed into a search problem in belief space, the space whose elements are sets of possible worlds. We introduce a new representation of that search space, replacing the need to store sets of possible worlds with a need to reason about the effects of action sequences. The reasoning is done by implication tests on propositional formulas in conjunctive normal form (CNF) that capture the action sequence semantics. Based on this approach, we extend the classical heuristic forward-search planning system FF to the conformant setting. The key to this extension is an appropriate extension of the relaxation that underlies FF's heuristic function, and of FF's machinery for solving relaxed planning problems: the extended machinery includes a stronger form of the CNF implication tests that we use to reason about the effects of action sequences. Our experimental evaluation shows the resulting planning system to be superior to the state-of-the-art conformant planners MBP, KACMBP, and GPT in a variety of benchmark domains.