de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Computing Equilibria for a Service Provider Game with (Im)perfect Information

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44108

Beier,  René
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44276

Czumaj,  Artur
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44853

Krysta,  Piotr
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45673

Vöcking,  Berthold
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Beier, R., Czumaj, A., Krysta, P., & Vöcking, B. (2006). Computing Equilibria for a Service Provider Game with (Im)perfect Information. ACM Transactions on Algorithms, 2, 679-706.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-225D-C
Zusammenfassung
We study fundamental algorithmic questions concerning the complexity of market equilibria under perfect and imperfect information by means of a basic microeconomic game. Suppose a provider offers a service to a set of potential customers. Each customer has a particular demand of service and her behavior is determined by a utility function that is nonincreasing in the sum of demands that are served by the provider. Classical game theory assumes complete information: the provider has full knowledge of the behavior of all customers. We present a complete characterization of the complexity of computing optimal pricing strategies and of computing best/worst equilibria in this model. Basically, we show that most of these problems are inapproximable in theworst case but admit an FPASin the average case. Our average case analysis covers large classes of distributions for customer utilities. We generalize our analysis to robust equilibria in which players change their strategies only when this promises a significant utility improvement.