Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Conference Paper

BSP Shapes


Stoll,  Carsten
Computer Graphics, MPI for Informatics, Max Planck Society;

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Stoll, C., Seidel, H.-P., & Alexa, M. (2006). BSP Shapes. In 2006 International Conference on Shape Modeling and Applications (SMI 2006) (pp. 42-47). Washington, USA: IEEE.

Cite as:
We discuss a shape representation based on a set of disconnected (planar) polygons. The polygons are computed by creating a BSP that contains approximately linear surface patches in each cell. This is achieved by employing two heuristics for finding appropriate split planes in each cell. Leaf nodes in the BSP tree represent either polygonal surface approximations or empty (clip) cells rather than split planes. We show that the resulting set of disconnected primitives typically leads to a better two-sided Hausdorff error for a given number of primitives than meshes. The BSP cells can be coded with few bits and, consequently, the tree is a compact shape representation. The special properties of BSPs are very useful in applications that need to perform spatial queries on the primitives, such as for occlusion and view frustum culling, and proximity or collision tests.