de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Yago: A Core of Semantic Knowledge - Unifying WordNet and Wikipedia

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45572

Suchanek,  Fabian M.
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44738

Kasneci,  Gjergji
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: A Core of Semantic Knowledge - Unifying WordNet and Wikipedia. In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, & P. J. Shenoy (Eds.), WWW 2007: 16th International World Wide Web Conference (pp. 697-706). New York, NY, USA: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-213D-F
Zusammenfassung
We present {YAGO}, a light-weight and extensible ontology with high coverage and quality. {YAGO} builds on entities and relations and currently contains roughly 900,000 entities and 5,000,000 facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from the unification of Wikipedia and WordNet, using a carefully designed combination of rule-based and heuristic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations, products, etc. with their semantic relationships -- and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact correctness shows an accuracy of about 95%. {YAGO} is based on a logically clean model, which is decidable, extensible, and compatible with {RDFS}. Finally, we show how {YAGO} can be further extended by state-of-the-art information extraction techniques.