de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Unsupervised Prediction of Citation Influences

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44319

Dietz,  Laura
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44132

Bickel,  Steffen
Machine Learning, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45377

Scheffer,  Tobias
Machine Learning, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dietz, L., Bickel, S., & Scheffer, T. (2007). Unsupervised Prediction of Citation Influences. In Z. Ghahramani (Ed.), ICML'07 (pp. 233-240). New York, NY: ACM. doi:10.1145/1273496.1273526.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2126-1
Zusammenfassung
Abstract Publication repositories contain an abundance of information about the evolution of scientific research areas. We address the problem of creating a visualization of a research area that describes the flow of topics between papers, quantifies the impact that papers have on each other, and helps to identify key contributions. To this end, we devise a probabilistic topic model that explains the generation of documents; the model incorporates the aspects of topical innovation and topical inheritance via citations. We evaluate the model's ability to predict the strength of influence of citations against manually rated citations.