de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Spatio-Temporal Registration Techniques for Relightable 3D Video

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons43978

Ahmed,  Naveed
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44965

Magnor,  Marcus
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahmed, N., Theobalt, C., Magnor, M., & Seidel, H.-P. (2007). Spatio-Temporal Registration Techniques for Relightable 3D Video. In IEEE International Conference on Image Processing 2007, ICIP 2007. - Vol. 2 (pp. 501-504). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-20C1-D
Zusammenfassung
By jointly applying a model-based marker-less motion capture approach and multi-view texture generation 3D Videos of human actors can be reconstructed from multi-view video streams. If the input data were recorded under calibrated lighting, the texture information can also be used to measure time-varying surface reflectance. This way, 3D videos can be realistically displayed under novel lighting conditions. Reflectance estimation is only feasible if the multi-view texture-to-surface registration is consistent over time. In this paper, we propose two image-based warping methods that compensate registration errors due to inaccurate model geometry and shifting of apparel over the body.