de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Seeing People in Different Light-Joint Shape, Motion, and Reflectance Capture

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons43978

Ahmed,  Naveed
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44911

Lensch,  Hendrik P. A.
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44965

Magnor,  Marcus
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Theobalt, C., Ahmed, N., Lensch, H. P. A., Magnor, M., & Seidel, H.-P. (2007). Seeing People in Different Light-Joint Shape, Motion, and Reflectance Capture. IEEE Transactions on Visualization and Computer Graphics, 13(4), 663-674. doi:10.1109/TVCG.2007.1006.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-20A5-B
Abstract
By means of passive optical motion capture real people can be authentically animated and photo-realistically textured. To import real-world characters into virtual environments, however, also surface reflectance properties must be known. We describe a video-based modeling approach that captures human shape and motion as well as reflectance characteristics from a handful of synchronized video recordings. The presented method is able to recover spatially varying surface reflectance properties of clothes from multi-view video footage.The resulting model description enables us to realistically reproduce the appearance of animated virtual actors under different lighting conditions, as well as to interchange surface attributes among different people, e.g. for virtual dressing.Our contribution can be used to create \mbox{3D} renditions of real-world people under arbitrary novel lighting conditions on standard graphics hardware.