de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Randomly Rounding Rationals with Cardinality Constraints and Derandomizations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44338

Doerr,  Benjamin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Doerr, B. (2007). Randomly Rounding Rationals with Cardinality Constraints and Derandomizations. In W. Thomas, & P. Weil (Eds.), STACS 2007: 24th Annual Symposium on Theoretical Aspects of Computer Science (pp. 441-452). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2072-E
Zusammenfassung
We show how to generate randomized roundings of rational vectors that satisfy hard cardinality constraints and allow large deviations bounds. This improves and extends earlier results by Srinivasan (FOCS 2001), Gandhi et al. (FOCS 2002) and the author (STACS 2006). Roughly speaking, we show that also for rounding arbitrary rational vectors randomly or deterministically, it suffices to understand the problem for vectors (which typically is much easier). So far, this was only known for vectors with entries in , ℓ ∈ ℕ. To prove the general case, we exhibit a number of results of independent interest, in particular, a quite useful lemma on negatively correlated random variables, an extension of de Werra’s (RAIRO 1971) coloring result for unimodular hypergraphs and a sufficient condition for a unimodular hypergraph to have a perfectly balanced non-trivial partial coloring. We also show a new solution for the general derandomization problem for rational matrices.