de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Optimizing Ranked Retrieval

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons127842

Neumann,  Thomas
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neumann, T. (2007). Optimizing Ranked Retrieval. In W. Wagner, N. Revell, & G. Pernul (Eds.), Database and Expert Systems Applications, 18th International Conference, DEXA 2007 (pp. 329-338). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2038-3
Zusammenfassung
Ranked retrieval plays an important role in explorative querying, where the user is interested in the top k results of complex ad-hoc queries. In such a scenario, response times are very important, but at the same time, tuning techniques, such as materialized views, are hard to use. However, it would be highly desirable for the query optimizer to exploit the top-k property of the query, i.e., to optimize query execution such that the top-k results are produced as fast as possible. We present a novel approach to optimize ad-hoc top-k queries, extending the classical approach of equivalent rewrites by explicitly exploiting the top-k nature of the queries for performance optimizations. Our experimental results support our claim that integrating top-k processing into algebraic optimization greatly reduces the query execution times and provides strong evidence that the resulting execution plans are robust against statistical misestimations.