de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Mutagenetic tree Fisher kernel improves prediction of HIV drug resistance from viral genotype

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45492

Sing,  Tobias
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44105

Beerenwinkel,  Niko
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sing, T., & Beerenwinkel, N. (2007). Mutagenetic tree Fisher kernel improves prediction of HIV drug resistance from viral genotype. In B. Schölkopf, J. C. Platt, & T. Hofmann (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1297-1304). Cambridge, Mass.: MIT Press.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1FF9-7
Zusammenfassung
Starting with the work of Jaakkola and Haussler, a variety of approaches have been proposed for coupling domain-specific generative models with statistical learning methods. The link is established by a kernel function which provides a similarity measure based inherently on the underlying model. In computational biology, the full promise of this framework has rarely ever been exploited, as most kernels are derived from very generic models, such as sequence profiles or hidden Markov models. Here, we introduce the MTreeMix kernel, which is based on a generative model tailored to the underlying biological mechanism. Specifically, the kernel quantifies the similarity of evolutionary escape from antiviral drug pressure between two viral sequence samples. We compare this novel kernel to a standard, evolution-agnostic amino acid encoding in the prediction of HIV drug resistance from genotype, using support vector regression. The results show significant improvements in predictive performance across 17 anti-HIV drugs. Thus, in our study, the generative-discriminative paradigm is key to bridging the gap between population genetic modeling and clinical decision making.