de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Mutagenetic tree Fisher kernel improves prediction of HIV drug resistance from viral genotype

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45492

Sing,  Tobias
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44105

Beerenwinkel,  Niko
Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sing, T., & Beerenwinkel, N. (2007). Mutagenetic tree Fisher kernel improves prediction of HIV drug resistance from viral genotype. In B. Schölkopf, J. C. Platt, & T. Hofmann (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1297-1304). Cambridge, Mass.: MIT Press.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-1FF9-7
Abstract
Starting with the work of Jaakkola and Haussler, a variety of approaches have been proposed for coupling domain-specific generative models with statistical learning methods. The link is established by a kernel function which provides a similarity measure based inherently on the underlying model. In computational biology, the full promise of this framework has rarely ever been exploited, as most kernels are derived from very generic models, such as sequence profiles or hidden Markov models. Here, we introduce the MTreeMix kernel, which is based on a generative model tailored to the underlying biological mechanism. Specifically, the kernel quantifies the similarity of evolutionary escape from antiviral drug pressure between two viral sequence samples. We compare this novel kernel to a standard, evolution-agnostic amino acid encoding in the prediction of HIV drug resistance from genotype, using support vector regression. The results show significant improvements in predictive performance across 17 anti-HIV drugs. Thus, in our study, the generative-discriminative paradigm is key to bridging the gap between population genetic modeling and clinical decision making.