de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Marker-less Deformable Mesh Tracking for Human Shape and Motion Capture

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons43977

de Aguiar,  Edilson
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45557

Stoll,  Carsten
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Aguiar, E., Theobalt, C., Stoll, C., & Seidel, H.-P. (2007). Marker-less Deformable Mesh Tracking for Human Shape and Motion Capture. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, CVPR'07. - Vol. 6 (pp. 2502-2509). Piscataway, NJ, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1FC6-A
Zusammenfassung
We present a novel algorithm to jointly capture the motion and the dynamic shape of humans from multiple video streams without using optical markers. Instead of relying on kinematic skeletons, as traditional motion capture methods, our approach uses a deformable high-quality mesh of a human as scene representation. It jointly uses an image-based \mbox{3D} correspondence estimation algorithm and a fast Laplacian mesh deformation scheme to capture both motion and surface deformation of the actor from the input video footage. As opposed to many related methods, our algorithm can track people wearing wide apparel, it can straightforwardly be applied to any type of subject, e.g. animals, and it preserves the connectivity of the mesh over time. We demonstrate the performance of our approach using synthetic and captured real-world video sequences and validate its accuracy by comparison to the ground truth.