de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Database Selection and Result Merging in P2P Web Search

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44242

Chernov,  Sergey
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45459

Serdyukov,  Pavel
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44113

Bender,  Matthias
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45041

Michel,  Sebastian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45808

Zimmer,  Christian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chernov, S., Serdyukov, P., Bender, M., Michel, S., Weikum, G., & Zimmer, C. (2007). Database Selection and Result Merging in P2P Web Search. In G. Moro, S. Bergamaschi, S. Joseph, J.-H. Morin, & A. M. Ouksel (Eds.), Databases, Information Systems, and Peer-to-Peer Computing: International Workshops, DBISP2P 2005/2006 (pp. 26-37). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1ECE-2
Zusammenfassung
Intelligent Web search engines are extremely popular now. Currently, only the commercial centralized search engines like Google can process terabytes of Web data. Alternative search engines fulfilling collaborative Web search on a voluntary basis are usually based on a blooming Peer-to-Peer (P2P) technology. In this paper, we investigate the effectiveness of different database selection and result merging methods in the scope of P2P Web search engine Minerva. We adapt existing measures for database selection and results merging, all directly derived from popular document ranking measures, to address the specific issues of P2P Web search. We propose the general approach to both tasks based on the combination of pseudo-relevance feedback methods. From experiments with TREC Web data, we observe that the pseudo-relevance feedback information from the topically organized collections improves retrieval quality.