de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Bounded-hop Energy-efficient Broadcast in Low-dimensional Metrics Via Coresets

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44464

Funke,  Stefan
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44893

Laue,  Sören
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Funke, S., & Laue, S. (2007). Bounded-hop Energy-efficient Broadcast in Low-dimensional Metrics Via Coresets. In W. Thomas, & P. Weil (Eds.), STACS 2007 (pp. 272-283). Berlin: Springer. doi:10.1007/978-3-540-70918-3_24.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1E79-2
Zusammenfassung
We consider the problem of assigning powers to nodes of a wireless network in the plane such that a message from a source node s reaches all other nodes within a bounded number k of transmissions and the total amount of assigned energy is minimized. By showing the existence of a coreset of size we are able to (1 + ε)-approximate the bounded-hop broadcast problem in time linear in n which is a drastic improvement upon the previously best known algorithm. While actual network deployments often are in a planar setting, the experienced metric for several reasons is typically not exactly of the Euclidean type, but in some sense ’close’. Our algorithm (and others) also work for non-Euclidean metrics provided they exhibit a certain similarity to the Euclidean metric which is known in the literature as bounded doubling dimension. We give a novel characterization of such metrics also pointing out other applications such as space-efficient routing schemes. This work was supported by the Max Planck Center for Visual Computing and Communication (MPC-VCC) funded by the German Federal Ministry of Education and Research (FKZ 01IMC01).