de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Architectural Alternatives for Information Filtering in Structured Overlay Networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45639

Tryfonopoulos,  Christos
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45808

Zimmer,  Christian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Koubarakis,  Manolis
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tryfonopoulos, C., Zimmer, C., Koubarakis, M., & Weikum, G. (2007). Architectural Alternatives for Information Filtering in Structured Overlay Networks. IEEE Internet Computing, 11(4), 24-34. doi:http://doi.ieeecomputersociety.org/10.1109/MIC.2007.79.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1E29-3
Zusammenfassung
Today's content providers are naturally distributed and produce large amounts of new information every day. Peer-to-peer information filtering is a promising approach that offers scalability, adaptivity to high dynamics, and failure resilience. The authors developed two approaches that utilize the Chord distributed hash table as the routing substrate, but one stresses retrieval effectiveness, whereas the other relaxes recall guarantees to achieve lower message traffic and thus better scalability. This article highlights the two approaches' main characteristics, presents the issues and trade-offs involved in their design, and compares them in terms of scalability, efficiency, and filtering effectiveness.