de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44374

Elbassioni,  Khaled
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45495

Sitters,  Rene
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Elbassioni, K., Sitters, R., & Zhang, Y. (2007). A Quasi-PTAS for Profit-Maximizing Pricing on Line Graphs. In L. Arge, M. Hoffmann, & E. Welzl (Eds.), Algorithms - ESA 2007: 15th Annual European Symposium (pp. 451-462). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1E25-B
Zusammenfassung
We consider the problem of pricing items so as to maximize the profit made from selling these items. An instance is given by a set $E$ of $n$ items and a set of $m$ clients, where each client is specified by one subset of $E$ (the bundle of items he/she wants to buy), and a budget (valuation), which is the maximum price he is willing to pay for that subset. We restrict our attention to the model where the subsets can be arranged such that they form intervals of a line graph. Assuming an unlimited supply of any item, this problem is known as \emph{the highway problem} and so far only an $O(\log n)$-approximation algorithm is known. We show that a PTAS is likely to exist by presenting a quasi-polynomial time approximation scheme. We also combine our ideas with a recently developed quasi-PTAS for the unsplittable flow problem on line graphs to extend this approximation scheme to the limited supply version of the pricing problem.