de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Visualization of Points and Segments of Real Algebraic Plane Curves

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44381

Emeliyanenko,  Pavel
Algorithms and Complexity, MPI for Informatics, Max Planck Society;
International Max Planck Research School, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45758

Wolpert,  Nicola
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Emeliyanenko, P. (2007). Visualization of Points and Segments of Real Algebraic Plane Curves. Master Thesis, Universität des Saarlandes, Saarbrücken.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1DC6-B
Zusammenfassung
This thesis presents an exact and complete approach for visualization of segments and points of real plane algebraic curves given in implicit form $f(x,y) = 0$. A curve segment is a distinct curve branch consisting of regular points only. Visualization of algebraic curves having self-intersection and isolated points constitutes the main challenge. Visualization of curve segments involves even more difficulties since here we are faced with a problem of discriminating different curve branches, which can pass arbitrary close to each other. Our approach is robust and efficient (as shown by our benchmarks), it combines the advantages both of curve tracking and space subdivision methods and is able to correctly rasterize segments of arbitrary-degree algebraic curves using double, multi-precision or exact rational arithmetic.