de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Virtual Klingler Dissection: Putting Fibers into Context

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45428

Schultz,  Thomas
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45353

Sauber,  Natascha
Computer Graphics, MPI for Informatics, Max Planck Society;

Anwander,  Alfred
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45606

Theisel,  Holger
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schultz, T., Sauber, N., Anwander, A., Theisel, H., & Seidel, H.-P. (2008). Virtual Klingler Dissection: Putting Fibers into Context. In A. Vilanova, A. Telea, G. Scheuermann, & T. Möller (Eds.), EuroVis 2008 (pp. 1063-1070). Oxford, UK: Blackwell.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1D5A-E
Zusammenfassung
Fiber tracking is a standard tool to estimate the course of major white matter tracts from diffusion tensor magnetic resonance imaging (DT-MRI) data. In this work, we aim at supporting the visual analysis of classical streamlines from fiber tracking by integrating context from anatomical data, acquired by a $T_1$-weighted MRI measurement. To this end, we suggest a novel visualization metaphor, which is based on data-driven deformation of geometry and has been inspired by a technique for anatomical fiber preparation known as Klingler dissection. We demonstrate that our method conveys the relation between streamlines and surrounding anatomical features more effectively than standard techniques like slice images and direct volume rendering. The method works automatically, but its GPU-based implementation allows for additional, intuitive interaction.