de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

TOB: Timely Ontologies for Business Relations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45795

Zhang,  Qi
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45572

Suchanek,  Fabian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, Q., Suchanek, F., & Weikum, G. (2008). TOB: Timely Ontologies for Business Relations. In 11th International Workshop on the Web and Databases (WebDB 2008) (pp. Art.13.1-6). Como: Politecnico di Milano.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1D39-7
Zusammenfassung
In this paper we present a suite of methods for extracting temporal relations from semi-structured and textual Web sources. We particularly address the needs for building and maintaining business ontologies, where the time aspects of relations between companies, between companies and products, and between companies and customers are important. For example, the date on which a company acquired another company or when a new CEO took over is crucial information for business-intelligence applications. Our methods are geared for extracting business relations and their time information from three kinds of sources: Wikipedia infoboxes, Reuter’s news feeds, and news pages provided by Google. All techniques are integrated into the TOB framework for timely business ontologies. Our experiments show that we can achieve fairly high precision for the extracted information.