de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Robust Fusion of Dynamic Shape and Normal Capture for High-quality Reconstruction of Time-varying Geometry

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons43978

Ahmed,  Naveed
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44336

Dobrev,  Petar
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahmed, N., Theobalt, C., Dobrev, P., Seidel, H.-P., & Thrun, S. (2008). Robust Fusion of Dynamic Shape and Normal Capture for High-quality Reconstruction of Time-varying Geometry. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008) (pp. 1-8). Los Alamitos, USA: IEEE Computer Society.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-1CDB-5
Zusammenfassung
We present a new passive approach to capture time-varying scene geometry in large acquisition volumes from multi-view video. It can be applied to reconstruct complete moving models of human actors that feature even slightest dynamic geometry detail, such as wrinkles and folds in clothing, and that can be viewed from 360 degrees. Starting from multi-view video streams recorded under calibrated lighting, we first perform marker-less human motion capture based on a smooth template with no high-frequency surface detail. Subsequently, surface reflectance and time-varying normal fields are estimated based on the coarse template shape. The main contribution of this work is a new statistical approach to solve the non-trivial problem of transforming the captured normal field that is defined over the smooth non-planar 3D template into true 3D displacements. Our spatio-temporal reconstruction method outputs displaced geometry that is accurate at each time step of video and temporally smooth, even if the input data are affected by noise.