de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Exploiting Session Context for Information Retrieval - A Comparative Study

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45157

Pandey,  Gaurav
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44955

Luxenburger,  Julia
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Pandey, G., & Luxenburger, J. (2008). Exploiting Session Context for Information Retrieval - A Comparative Study. In C. Macdonald, I. Ounis, V. Plachouras, I. Ruthven, & R. W. White (Eds.), Advances in Information Retrieval: 30th European Conference on IR Research, ECIR 2008 (pp. 652-657). Berlin: Springer.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-1B9D-6
Abstract
Hard queries are known to benefit from relevance feedback provided by users. It is, however, also known that users are generally reluctant to provide feedback when searching for information. A natural way to retrieve the most relevant information satisfying the user need without actually demanding any active user participation is to exploit implicit feedback from the previous user search behavior, i.e., from the context of the current search session. In this work, we present a comparative study on the performance of the three most prominent retrieval models, the \emph{vector-space}, \emph{probabilistic}, and \emph{language-model based} retrieval frameworks, when additional session context is incorporated.