de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Exploiting Lineage for Confidence Computation in Uncertain and Probabilistic Databases

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45609

Theobald,  Martin
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Das Sarma, A., Theobald, M., & Widom, J. (2008). Exploiting Lineage for Confidence Computation in Uncertain and Probabilistic Databases. In Proceedings of the 2008 IEEE 24th International Conference on Data Engineering (ICDE'08) (pp. 1023-1032). Piscataway, NJ: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-1B9B-A
Abstract
We study the problem of computing query results with confidence values in ULDBs: relational databases with uncertainty and lineage. ULDBs, which subsume probabilistic databases, offer an alternative decoupled method of computing confidence values: Instead of computing confidences during query processing, compute them afterwards based on lineage. This approach enables a wider space of query plans, and it permits selective computations when not all confidence values are needed. This paper develops a suite of algorithms and optimizations for a broad class of relational queries on ULDBs. We provide confidence computation algorithms for single data items, as well as efficient batch algorithms to compute confidences for an entire relation or database. All algorithms incorporate memoization to avoid redundant computations, and they have been implemented in the Trio prototype ULDB database system. Performance characteristics and scalability of the algorithms are demonstrated through experimental results over a large synthetic dataset.